Saturday, March 9, 2013

EKSTRASI CAIR-CAIR

Ekstraksi Cair Cair

Ekstraksi cair-cair sangat berguna untuk memisahkan analit yang dituju dari penganggu dengan cara melakukan partisi sampel antar 2 pelarut yang tidak saling campur. Salah satu fasenya seringkali berupa air dan fase yang lain adalah pelarut organik. Senyawa-senyawa yang bersifat polar akan ditemukan di dalam fase air, sementara senyawa-senyawa yang bersifat hidrofobik akan masuk pada pelarut organik. Analit yang terekstraksi ke dalam pelarut organik akan mudah diperoleh kembali dengan cara penguapan pelarut, sementara analit yang masuk ke dalam fase air seringkali diinjeksikan secara langsung ke dalam kolom.
Disamping itu, ekstraksi pelarut juga digunakan untuk memekatkan analit yang ada dalam sampel dengan jumlah kecil sehingga tidak memungkinkan atau menyulitkan untuk deteksi atau kuantifikasinya.
Dalam bentuk yang paling sederhana, suatu alikuot larutan air digojog dengan pelarut organik yang tidak campur dengan air. Kebanyakan prosedur ekstraksi cair-cair melibatkan ekstraksi analit dari fase air ke dalam pelarut organik yang bersifat non polar atau agak polar seperti heksana, metilbenzen atau diklorometan. Meskipun demikian proses sebaliknya (ekstraksi analit dari pelarut organik non polar ke dalam air) juga mungkin terjadi. Dengan kata lain, dalam ekstraksi cair-cair ini tidaklah mungkin untuk mencapai 100% analit terekstraksi pada salah satu fase/pelarut.
 
Karena ekstraksi merupakan proses kesetimbangan dengan efisiensi terbatas, maka sejumlah tertentu analit akan tertahan di kedua fase. Kesetimbangan kimia yang melibatkan perubahan pH, kompleksasi, pasangan ion, dan sebagainya dapat digunakan untuk meningkatkan perolehan kembali analit dan/atau menghilangkan pengganggu.
Teori Ekstraksi Cair-cair
Ekstraksi cair-cair ditentukan oleh distribusi Nerst atau hukum partisi yang menyatakan bahwa ”pada konsentrasi dan tekanan yang konstan, analit akan terdistribusi dalam proporsi yang selalu sama diantara dua pelarut yang saling tidak campur”. Perbandingan konsentrasi pada keadaan setimbang di dalam 2 fase disebut dengan koefisien distribusi atau koefisien partisi (KD) dan diekspresikan dengan:
                             [S]org
                  KD = -------------
                             [S]aq
[S]org dan [S]aq masing-masing merupakan konsentrasi analit dalam fase organik dan dalam fase air; KD merupakan koefisien partisi.

Dalam prakteknya, analit seringkali berada dalam bentuk kimia yang berbeda karena adanya disosiasi (ionisasi), protonasi, dan juga kompleksasi atau polimerisasi karenanya ekspresi yang lebih berguna adalah rasio distribusi atau rasio partisi (D) yang diekspresikan dengan:
                               (Cs)org
                      D = -------------
                               (Cs)aq
(Cs)org dan (Cs)aq masing-masing merupakan konsentrasi total analit (dalam segala bentuk) dalam fase organik dan dalam fase air; D merupakan rasio partisi.
Jika tidak ada interaksi antar analit yang terjadi dalam kedua fase maka nilai KD dan D adalah identik.
Analit yang mempunyai rasio distrbusi besar (10 4 atau lebih) akan mudah terekstraksi ke dalam pelarut organik meskipun proses kesetimbangan (yang berari 100% solut terekstraksi atau tertahan) tidak pernah terjadi.
Kebanyakan ekstraksi dilakukan dengan menggunakan corong pisah dalam waktu beberapa menit. Akan tetapi untuk efektifitas ekstraksi analit dengan rasio distribusi yang kecil (< 1) hanya dapat dicapai dengan mengenakan pelarut baru pada larutan sampel secara terus-menerus. Hal ini dapat dilakuan dengan refluks menggunakan alat yang didisain secara khusus yaitu suatu alat ekstraktor secara terus-menerus.
Alat ekstraksi secara terus-menerus : 
  • pelarut pengekstraksi kurang rapat dibanding dengan larutan yang mengandung solut yang akan diekstraksi.
  • pelarut pengekstraksi lebih rapat dibanding dengan larutan yang mengandung solut yang akan diekstraksi.
Pelarut organik yang dipilih untuk ekstraksi pelarut adalah: mempunyai kelarutan yang rendah dalam air (<10%), dapat menguap sehingga memudahkan menghilangkan pelarut organik setelah dilakukan ekstraksi, dan mempunyai kemurnian yang tinggi untuk meminimalkan adanya kontaminasi sampel.

Efisiensi ekstraksi dan selektifitas
Efesiensi proses ekstraksi tergantung pada nilai distribusinya (D-nya) dan juga tergantung pada volume relatif kedua fase. Dengan menggunakan ekstraksi, banyaknya analit yang terekstraksi dapat dihitung dengan rumus berikut:
Vorg dan Vaq masing-masing merupakan banyaknya volume fase organik dan fase air yang digunakan; D merupakan rasio distribusi.

Analit dengan nilai D yang kecil maka ekstraksi berulang akan meningkatkan efisiensi ekstraksi. Rumus yang digunakan untuk ektraksi bertingkat adalah :
Caq     : banyaknya analit dalam fase air mula-mula
(Caq)n : banyaknya analit dalam fase air setelah n kali ekstraksi
Vorg    : banyaknya volume fase organik
Vaq     : banyaknya volume fase air
N        : banyaknya (frekuensi) ekstraksi

Dari persamaan di atas nampak jelas bahwa efisiensi ekstraksi meningkat jika (i) digunakan jumlah larutan pengekstraksi yang lebih besar, atau (ii) dengan melakukan beberapa kali ekstraksi dengan volume yang sama.

Masalah-masalah dalam ekstraksi pelarut
Beberapa masalah sering dijumpai ketika melakukan ekstraksi pelarut yaitu: terbentuknya emulsi; analit terikat kuat pada partikulat; analit terserap oleh partikulat yang mungkin ada; analit terikat pada senyawa yang mempunyai berat molekul tinggi; dan adanya kelarutan analit secara bersama-sama dalam kedua fase.

Terjadinya emulsi merupakan hal yang paling sering dijumpai. Oleh karena itu jika emulsi antara kedua fase ini tidak dirusak maka recovery yang diperoleh kurang bagus. Emulsi dapat dipecah dengan beberapa cara :
  1. Penambahan garam ke dalam fase air
  2. Pemanasan atau pendinginan corong pisah yang digunakan
  3. Penyaringan melalui glass-wool
  4. Penyaringan dengan menggunakan kertas saring
  5. Penambahan sedikit pelarut organik yang berbeda
  6. Sentrifugasi.
Jika senyawa-senyawa yang akan dilakukan ekstraksi pelarut berasal dari plasma maka kemungkinan senyawa tersebut terikat pada protein, sehingga recovery yang dihasilkan rendah. Teknik yang dapat digunakan untuk memisahkan senyawa yang terikat pada protein meliputi :
  • Penambahan detergen;
  • Penambahan pelarut organik yang lain;
  • Penambahan asam kuat;
  • Pengenceran dengan air;
  • Penggantian dengan senyawa yang mampu mengikat lebih kuat.

No comments:

Post a Comment

(Chapter V - Food Technology) PERAN THEAFLAVIN DAN THEARUBIGINS DARI TEH HITAM DALAM MENCEGAH PENYAKIT JANTUNG

RINGKASAN Teh adalah minuman yang mengandung kafein , yang dibuat dengan cara menyeduh daun , pucuk daun, atau tangkai daun yang dikeri...